
PHP

control structures - loops
indexed arrays

Recap: PHP files are processed top to bottom in
sequence

<html>
<?php ... ?>
<head>
<?php ... ?>
<title>... <?php ... ?> ...</title>
</head>
<body>! ! !
<p>
<?php ... ?>
</p>
</body>
</html>

Starting at the top

Working down to the bottom

The control flow

Recap: But sometimes we need to have choices /
alternatives

Start at the top

Work down to the bottom

Outcome 1 Outcome 2

Condition here

Can be complex flows

Done with an if or a
switch statement

 if (expression)
 statement

 if (expression)
 statement1
 else
 statement2

 if (expression){
statement;
statement;
}

 else {
statement;
statement;
};

Perform the statement
if the expression is true

Perform statement1 if
the expression is true
otherwise statement2

Perform blocks of
statements if the
expression is true
otherwise ...

switch($name) {
 case 'value 1 of name':
 // do something
 break;
 case 'value 2 of name':
 // do something
 break;
 case 'value 3 of name':
 // do something
 break;
 case 'value 4 of name':
 // do something
 break;
 }

Best to choose this when $name has a limited set of
values known in advance

When the if statement has
many sub-if parts, a switch
statement may be better

And and Or
Sometimes the expression needs to test for multiple
conditions at once

And Or

PHP has built in support for logical AND and OR

And and Or
Example

if (($name=”Dan”) and ($favprog=”XFactor”)) {

// Done only if BOTH are true

}

And and Or
Example

if (($name=”Dan”) or ($favprog=”XFactor”)) {

// Done if either (or both) are true

}

Sometimes we need to do things many times

Start

Round the Loop

Eventually come out of the loop ...

for

Loops / Iteration / doing things over and over and
over and over

Three standard loop types

while ...
do ... while

for

Loops / Iteration / doing things over and over and
over and over

Three standard loop types - for loops today

while ...
do ... while

Choose a for-loop if the
number of times the loop will
run is known ‘in advance’

The loop will run 4 times
The loop will run 1000 times
The loop will run ‘n’ times

for

Loops / Iteration / doing things over and over and
over and over

while ...
do ... while

...or you are processing an
array (more on this in a
minute)

Three standard loop types - for loops today

 for (start; condition; change amount)
 statement

The structure of a for statement is:

for loop

or with many statements -
 for (start; condition; change amount){
 statement;
 statement;
 statement;
 statement;

};

 for (start; condition; change amount)

The structure of a for statement is:

for loop

Declare a counter in
here, assign it an

initial value

 for ($i=0; condition; change amount)

The structure of a for statement is:

for loop

Declare a counter in
here, assign it an

initial value

 for ($i=0; condition; change amount)

The structure of a for statement is:

for loop

Declare a counter in
here, assign it an

initial value Here i’m using $i - but
you can use any name

$counter $y $myCount

$loop $timesRound

 for ($i=0; condition; change amount)

The structure of a for statement is:

for loop

Condition goes here -
if true the loop will

continue

 for ($i=0; $i<20; change amount)

The structure of a for statement is:

for loop

Condition goes here -
if true the loop will

continue

 for ($i=0; $i<20; change amount)

The structure of a for statement is:

for loop

Change the counter
value here

 for ($i=0; $i<20; $i++)

The structure of a for statement is:

for loop

$i++ is a shorthand
for ‘add 1 to i’

Note how we can use the $i loop counter inside the
loop

$myNumber=8;

print "<p>This loop will work “.$myNumber.” times</p>";

for($i=1;$i<=$myNumber;$i++){

! print "<p>Going round the loop: ".$i. "</p>";

};

for loop

Don’t start changing its value inside the loop unless
you know what you are doing

Variations possible

for($counter=5;$counter<=10;$counter++){
! ...
};

for loop

We don’t have to start from ‘1’

Variations possible

for($myCounter=5;$myCounter<20;$myCounter=$myCounter+3){
!
};

for loop

We don’t have to increase by amounts of 1

Variations possible

for($j=20;$j>0;$j--){
!
};

for loop

We can count down

$j-- is a shorthand for
‘subtract 1 from j’

Arrays

• indexed arrays
• associative arrays

Much of this material is explained in PHP
programming 2nd Ed. Chap 5

Arrays

• indexed arrays - today
• associative arrays

Much of this material is explained in PHP
programming 2nd Ed. Chap 5

Arrays
Sometimes we have a set of values that should have
a single name

Can use a structure called an array to store these

A series of boxes with the same name

$colours

“Red” “White” “Green”

Arrays
So how do we get at the individual values inside the
array?

Use a number - the index

Index is indicated in square brackets

indexed arrays

Uses consecutive integers to index the cells

 print $colours[1];

0 1 2 3
Red Green Blue Yellow$colours

Green

indexed arrays

Uses consecutive integers to index the cells

 $colours[2]=”Purple”;

0 1 2 3
Red Green Blue Yellow$colours

indexed arrays

Uses consecutive integers to index the cells

 $colours[2]=”Purple”;

0 1 2 3
Red Green Purple Yellow$colours

indexed arrays

Use simple assignment to create the array

0
Red$colours

$colours[0]=”Red”;

indexed arrays

Use simple assignment to create the array

$colours[0]=”Red”;
$colours[1]=”Green”;

0 1
Red Green$colours

indexed arrays

Use simple assignment to create the array

$colours[0]=”Red”;
$colours[1]=”Green”;
$colours[2]=”Purple”;

0 1 2
Red Green Purple$colours

indexed arrays
If all the values are known in advance, use the
reserved word array

 $colours = array (”Red”,”Green”,”Purple”,”Yellow”);

0 1 2 3
Red Green Purple Yellow$colours

index starts from 0

indexed arrays

To add an element to the end, use []
$colours = array (”Red”,”Green”,”Purple”,”Yellow”);
$colours[] = “Black”;

0 1 2 3
Red Green Purple Yellow$colours

indexed arrays

To add an element to the end, use []
$colours = array (”Red”,”Green”,”Purple”,”Yellow”);
$colours[] = “Black”;

0 1 2 3 4
Red Green Purple Yellow Black$colours

See appropriate references for more useful array
functions

useful functions

function explanation

count() no of array cells

indexed arrays

To process all the elements in an array, use a loop

$colours = array (”Red”,”Green”,”Purple”,”Yellow”);
for($i=0;$i<count($colours);$i++){
print $colours[$i].”
”;
};

Red

Green

Purple

Yellow

