
Web Scripting using PHP

Server side scripting

• Programming language code embedded into a web
page

So what is a Server Side Scripting Language?

PERL
PHP

PYTHON
ASP

PERL
PHP

PYTHON
ASP

• Programming language code embedded into a web
page

Different ways of scripting the Web

No scripting (plain markup)
Client Side scripting
Server Side scripting

Combination of the above (AJAX)

No Scripting example - how it works...

User on a machine somewhere

Server machine

Being more specific...

Web Browser software

Web server
software

User types in a URL for a page with no
programming code inside

Uniform Resource Locator

Request is sent to
server using HTTP

Hypertext Transfer Protocol

Server software
finds the page

Page is sent back,
using HTTP

Browser renders /
displays the page

Server Side scripting

User types in a URL for a page with
PHP code inside

Request is sent to
server using HTTP

Server software
finds the page

Server side code
is executed

Page is sent back,
using HTTP

Browser renders /
displays the page

• Executes in the server

Server side scripting languages

• Before the page is sent from server to browser

• Server side code can access resources on the
server side

• Server side code is not visible in the client

Browser

Database server

Web server

How many items in stock?

HTTP request

Web server
executes code

Web server
executes code

Queries
database
server

Result
sent
back

HTML
generated

HTTP response

Answer displayed

So why PHP?

PERL
PHP

PYTHON
ASP

PHP usage ... php 1 to php 5

• Source: PHP programming 2nd Ed.

PHP compared to others ...

• Source: http://phpadvent.org/2010/usage-statistics-by-
ilia-alshanetsky

Difficult to compute - this
from 6 million domains

PHP compared to others ...

But ...

ASP.NET reported by many passive domains (i.e. installed
but not used)

PERL, Python and Java can be used to create stand
alone programs so general usage statistics probably
higher

Books - core syntax

Programming PHP, Second Edition

By Kevin Tatroe, Rasmus Lerdorf,
Peter MacIntyre
Second Edition April 2006

PHP in a Nutshell

By Paul Hudson
First Edition October 2005

** Recommended

Books - learning / tutorial based

Learning PHP 5

By David Sklar
First Edition June 2004

Learning PHP and MySQL

By Michele Davis, Jon Phillips
First Edition June 2006

Other texts..

• There are other publishers / texts (trade books)
• Look for books that cover PHP 5

• Open source, server side languages can rapidly
develop

• Features added or deprecated rapidly

PHP development

• 5 versions in 10 years

PHP 1
PHP 3

PHP 4

PHP 5

PHP development

• perhaps ...

https://wiki.php.net/rfc/releaseprocess

Language basics

• Embedding PHP in Web pages
• Whitespace and Line breaks
• Statements and semicolons
• Case sensitivity
• Comments
• Literals
• Identifiers
• Keywords
• Data types

Much of this material is explained in PHP
programming 2nd Ed. Chap 1 & 2

Embedding PHP in web pages

<?php
statement;
statement;
statement
?>

Use <?php and ?> to
surround the php code

Embedding PHP in web pages

<?php
statement;statement; statement;
 statement;

statement;statement;
?>

In general whitespace
doesn’t matter
Use indenting and
separate lines to create
readable code

The legendary Hello World program
<!DOCTYPE HTML PUBLIC "-//W3C/DTD HTML 4.01

Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>This is the first PHP program</title>
</head>
<body>! ! !
<p>
<?php
print "Hello World!";
?>
</p>
</body>
</html>

The legendary Hello World program
<!DOCTYPE HTML PUBLIC "-//W3C/DTD HTML 4.01

Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>This is the first PHP program</title>
</head>
<body>! ! !
<p>
<?php
print "Hello World!";
?>
</p>
</body>
</html>

The legendary Hello World program
<!DOCTYPE HTML PUBLIC "-//W3C/DTD HTML 4.01

Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>This is the first PHP program</title>
</head>
<body>! ! !
<p>
<?php
print "Hello World!";
?>
</p>
</body>
</html>

print a value to the
output

Here the value is a
sequence of chars
indicated by start and
end quotes

Other ways to embed PHP

<? and ?> SGML style Some older text books
use this - deprecated

<% and %> Microsoft ASP style
Some HTML editors use
this for color syntax

hints
<script language

=”php”>
and </script>

Echoes client side scripting
embedding

Some strict HTML
editors may respect this

The preferred method is <?php and ?>

PHP can be put ‘anywhere’..

<html>
<?php ... ?>
<head>
<?php ... ?>
<title>... <?php ... ?> ...</title>
</head>
<body>! ! !
<p>
<?php ... ?>
</p>
</body>
</html>

All the php blocks are processed
before the page is sent

PHP can be put ‘anywhere’.. but works in sequence

<html>
<?php ... ?>
<head>
<?php ... ?>
<title>... <?php ... ?> ...</title>
</head>
<body>! ! !
<p>
<?php ... ?>
</p>
</body>
</html>

Starting at the top

Working down to the bottom

<?php
statement;
statement;
statement
?>

Use ; to separate
statements

; optional here as end of
the php block (probably
best to put it in)

Statements and semicolons

Make this a rule - Put at the end of every statement

<?php
statement;
statement;
statement;
?>

This is the best way of
laying the code out

All of these would work the same way...

<?php
statement; statement;statement;
?>

<?php statement; statement;statement ?>

Case Sensitivity

Case insensitive Case sensitive

built in constructs and keywords names we make up

<!DOCTYPE HTML PUBLIC "-//W3C/DTD HTML 4.01
Transitional//EN"

 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>This is the second PHP program</title>
</head>
<body>!! !
<?php
print "<h1>Welcome to my website</h1>";
PRINT "<p>This is my web site, which is constructed";
prINT " from some HTML and PHP</p>";
?>
</body>
</html>

Case insensitivity

The same built in
command

<!DOCTYPE HTML PUBLIC "-//W3C/DTD HTML 4.01
Transitional//EN"

 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>This is the second PHP program</title>
</head>
<body>!! !
<?php
print "<h1>Welcome to my website</h1>";
PRINT "<p>This is my web site, which is constructed";
prINT " from some HTML and PHP</p>";
?>
</body>
</html>

Case insensitivity

$value
$VALUE
$vaLUE

Case sensitivity - names we define are case sensitive

Three different names

PHP requires a $ before names we define -
more on this in a minute ...

Many different ways to add comments
Comments

Comment Source Action
// C++ Comments to EOL

Unix shell scripting Comments to EOL

/* and */ C Comments out a block

<?php
php statement; // A comment here
php statement; # Another comment here

/* A series of lines
with comments ignored by the PHP processor
*/
php statement;
?>

Comments

<?php
php statement; // A comment here
php statement; # Another comment here

/* A series of lines
with comments ignored by the PHP processor
*/
php statement;
?>

Comments

Everything in red is ignored by the PHP interpreter

Language basics

• Embedding PHP in Web pages
• Whitespace and Line breaks
• Statements and semicolons
• Case sensitivity
• Comments
• Literals
• Identifiers
• Keywords
• Data types

✔
✔
✔
✔
✔

Literals

A data value that appears directly in the program

2001 An integer
0xFE Hexadecimal number
1.4142 Float
“Hello World” String
‘Hi’ String
true Bool
null built in ‘no value’ symbol

Identifiers

Identifiers (or names) in PHP must -

Begin with an ASCII letter (uppercase or lowercase)

or begin with the underscore character _

or any character between ASCII 0x7F to 0xFF

followed by any of these characters and the digits 0-9

Variables

Variables in PHP are identifiers prefixed by $

$bill
$value_count
$anothervalue3
$THIS_IS_NOT_A_GOOD_IDEA
$_underscore

$not valid
$[
$3wa

Valid

Invalid

Variables

We use variables for items of data that will change
as the program runs

$bill

Choose a sensible name and have as many as you
like

$total

$total_income

$salary $month

$percentage_increase

Variables

Your choice .. but be consistent

$totalBill

$percentageIncrease

http://en.wikipedia.org/wiki/CamelCase

Camel case uses upper case for words in the name
(apart from the first char)

$firstDayOfTheMonth

Variables

When we declare a variable, a space is reserved
and labelled for that item (in memory)

$bill

$bill

Variables

To give it a value, use the equals sign

$bill

$bill

$bill = 42 42

Variables

To give it a value, use the equals sign

$bill

$bill

$bill = 57.98 57.98

Variables

To give it a value, use the equals sign

$bill

$bill

$bill = “No payment” “No payment”

Variables

If a value is changed, the old value is overwritten

$bill

$bill

$bill = 42; 42
$bill = 58;

58

Variables

Sometimes we use the old value to recalculate the
new value

$bill

$bill

$bill = 42; 42
$bill = $bill*2 ;

84

Variables

Some languages are very strict about what kinds of
data are stored in variables - PHP doesn’t care

$bill=42;

$bill=42;
$bill=”Now its a string”;

print $bull;

Stores an integer

Overwrites with a string

Whoops - made a mistake
but it still works

Variables

Some languages are very strict about what kinds of
data are stored in variables - PHP doesn’t care

$bill=42;

$bill=42;
$bill=”Now its a string”;

print $bull;

Stores an integer

Overwrites with a string

Whoops - made a mistake
but it still works

$value=56;
$VALUE=78;
$vaLUE=89;

Case sensitivity

Three different
variables

PHP uses $ before the identifier to indicate a
variable

...
<body>!! !
<p>
<?php
$value=56;
$VALUE=78;
$vaLUE=89;

print '$value has a value of ';
print $value;
print ', VALUE has a value of ';
print $VALUE;
print ', $vaLUE has a value of ';
print $vaLUE;
?>
</p>
</body>
</html>

Case sensitivity

...
<body>!! !
<p>
<?php
$value=56;
$VALUE=78;
$vaLUE=89;

print '$value has a value of ';
print $value;
print ', VALUE has a value of ';
print $VALUE;
print ', $vaLUE has a value of ';
print $vaLUE;
?>
</p>
</body>
</html>

Case sensitivity

Constants

Referred to by their identifier and set using define()

define (‘BESTLANGUAGE’, “PHP”);
print BESTLANGUAGE;

Traditionally constants have UPPER CASE
IDENTIFIERS

Keywords

Reserved by
the language
for core
functionality

 CLASS _
_ _FILE_ _

_ _FUNCTION_ _
_ _LINE_ _

_ _METHOD_ _
Abstract

And
array()

As
Break
Case
catch

cfunction
Class
clone
Const

Continue

Declare
Default

die()
Do

echo()
Else

elseif
empty()

enddeclare
endfor

endforeach
endif

endswitch
endwhile

eval()
exception

exit()

extends
final
for

foreach
function

global
if

implements
include()

include_once()
interface

isset()
list()
new

old_function
Or

php_user_filter

print()
private

protected
public

require()

require_once()

return()
static
switch
tHRow

TRy
unset()

use
var

while
xor

Also - can’t
use a built in
function
name as a
variable

PHP provides 8 types
Data types

scalar (single-value) compound
integers arrays

floating-point objects
string

booleans

Two are special - resource and NULL

Integers
Whole numbers - range depends on the C compiler
that PHP was made in (compiled in)

+2,147,483,647 to -2,147,483,647

Larger integers get converted to floats automatically

Typically
0755Octal

0xFFHexadecimal

Floating-Point Numbers
Real numbers - again range is implementation
specific

1.7E-308 to 1.7E+308 with 15
digits of accuracyTypically

3.14, 0.017, -7.1, 0.314E1, 17.0E-3Examples

Strings

Delimited by either single or double quotes

‘here is a string’
“here is another string”

Strings - single quotes

You can use single quotes to enclose double quotes
$outputstring=‘He then said “Goodbye” and left’;

Useful for easily printing HTML attributes

$outputstring=‘BBC’;

Strings - double quotes

You can use double quotes to enclose single quotes
$outputstring=”He then said ‘Goodbye’ and left”;

Variable are expanded within double quotes
$name="Barry";

print "<p>We can use variable expansion when we print using double quotes - hello $name.</p>";

print '<p>But it does not work with single quotes - hello $name</p>';

Strings - double quotes

You can use double quotes to enclose single quotes
$outputstring=”He then said ‘Goodbye’ and left”;

Variable are expanded within double quotes
$name="Barry";

print "<p>We can use variable expansion when we print using double quotes - hello $name.</p>";

print '<p>But it does not work with single quotes - hello $name</p>';

Strings - double quotes
Double quotes also support a variety of string escapes

\" Double quotes
\n Newline
\r Carriage return
\t Tab
\\ Backslash
\$ Dollar sign
\{ Left brace
\} Right brace
\[Left bracket
\] Right bracket

\0 through \777 ASCII character represented by octal value
\x0 through \xFF ASCII character represented by hex value

Strings - double quotes

Remember that the HTML source is manipulated by
the PHP

print ”He then said ‘Goodbye’ and left \n”;
print “leaving in a hurry”;

Produces 1 line not 2 in the rendered HTML

So where is the \n ?

Strings - double quotes

Remember that the HTML source is manipulated by
the PHP

print ”He then said ‘Goodbye’ and left \n”;
print “leaving in a hurry”;

Produces 1 line not 2 in the rendered HTML

So where is the \n ?

Strings - HTML

Its HTML that must be used to change the display

print "<p>He then said 'Goodbye' and left
</p><p>driving off in a hurry.</p>";

Strings - HTML

Its HTML that must be used to change the display

print "<p>He then said 'Goodbye' and left
</p><p>driving off in a hurry.</p>";

Boolean

PHP has special reserved words for true and false

$sunIsShining=true;
$needACoat=false;

No quotes required - more on this later

Operator precedence

Heavily
borrowed
from C /
Perl

p - precedence
a - associativity

N - non-associative
R - Right to Left
L - Left to Left

Operators
Standard arithmetic operators: +, -, *, /, % ..

Concatenation operator: .
$outputstring=”He then said “.$quote;

Any non-string value is converted to a string before
the concatenation.

Operators

$aBool=true;

$anInt=156;

$aFloat=12.56;

$anotherFloat=12.2E6;

$massiveFloat=12.2E-78;

print "The bool printed looks like this: ".$aBool."
";

print "The int printed looks like this: ".$anInt."
";

print "The (smaller) float printed looks like this: ".$aFloat."
";

print "The larger float printed looks like this: ".$anotherFloat."
";

print "The even larger float printed looks like this: ".$massiveFloat."
";

Operators

$aBool=true;

$anInt=156;

$aFloat=12.56;

$anotherFloat=12.2E6;

$massiveFloat=12.2E-78;

print "The bool printed looks like this: ".$aBool."
";

print "The int printed looks like this: ".$anInt."
";

print "The (smaller) float printed looks like this: ".$aFloat."
";

print "The larger float printed looks like this: ".$anotherFloat."
";

print "The even larger float printed looks like this: ".$massiveFloat."
";

