
Databases - 5

Problems with the relational model
Functions and sub-queries

Problems (1)
To store information about real life entities, we often
have to cut them up into separate tables

Problems (1)
To store this information efficiently we’d use 4 tables

Problems (1)
To answer any questions we have to put them back
together again!

select *
from customer, rental, property, owner
where

Problems (1)

Cartesian Product is the most ‘expensive’ operation

select *
from customer, rental, property, owner
where

Takes time
Requires lots of memory
Requires lots of processor power Note

Thankfully, lots of
research work in this area
to improve the efficiency

Solution - Object Oriented Databases
Store information as a whole item - called an Object (in
the Object data model)

Problems (2) - Temporal information

The relational model is not very good at storing many
‘states’ of information (unless explicitly structured)

kuID name term time address
k0699345 Fred Tester 17 Penrhyn Road

k0545646 Martin Qwerty 20 Richmond Road

k0665665 Mary Smith 34 Kingston Road

student

Problems (2) - Temporal information

What happens when Martin moves in with Fred?

student

kuID name term time address
k0699345 Fred Tester 17 Penrhyn Road

k0545646 Martin Qwerty 17 Penrhyn Road

k0665665 Mary Smith 34 Kingston Road

Problems (2) - Temporal information
Query: Show all the places Martin has ever lived

student
kuID name term time address

k0699345 Fred Tester 17 Penrhyn Road

k0545646 Martin Qwerty 17 Penrhyn Road

k0665665 Mary Smith 34 Kingston Road

Problem: We can’t

Problems (2) - Temporal information
Query: When did Martin move house?

student
kuID name term time address

k0699345 Fred Tester 17 Penrhyn Road

k0545646 Martin Qwerty 17 Penrhyn Road

k0665665 Mary Smith 34 Kingston Road

Problem: Can’t answer

Problems (2) - Temporal information
Query: When did Martin tell us that he’d move house?

student
kuID name term time address

k0699345 Fred Tester 17 Penrhyn Road

k0545646 Martin Qwerty 17 Penrhyn Road

k0665665 Mary Smith 34 Kingston Road

Problem: Can’t answer

Solution - Temporal databases / temporal SQL

Databases explicitly structured to store old
information

Databases explicitly structured to note when
information changes

Problems (3) - Truth and probability

The relational model only stores information that is
100% true

kuID name
k0699345 Fred Tester

k0545646 Martin Qwerty

k0665665 Mary Smith

student

By having these rows
in the table...

...we are asserting
that this information
is true

Problems (3) - Truth and probability

kuID name
k0699345 Fred Tester

k0545646 Martin Qwerty

k0665665 Mary Smith

student

Fred is a student
Martin is a student
Mary is a student

All these statements are true - all
other information is false

The Closed World Assumption (CWA)

Unless explicitly included, everything else is
false

A
B

C

D
E

F

G
H

R S

The Closed World Assumption (CWA)

Is P in R ? No.

Problems (3) - Truth and probability
All other information is false

kuID name
k0699345 Fred Tester

k0545646 Martin Qwerty

k0665665 Mary Smith

student

Robyn isn’t here

...so Robyn isn’t a
student

Query: Is Robyn a student ?

Problems (3) - Truth and probability

But what if we want to store negative or false
information

Robyn is to NEVER be a student

kuID name
k0699345 Fred Tester

k0545646 Martin Qwerty

k0665665 Mary Smith

student

Can’t do it

Problems (3) - Truth and probability

But what if we want to store information that is
probably true

Its 90% probable that Robyn is
a student

kuID name
k0699345 Fred Tester

k0545646 Martin Qwerty

k0665665 Mary Smith

student

Can’t do it

Solution - Deductive databases

Databases explicitly structured to store rules and
facts

These can store complex statements of truth and false

Problems (4) - Some queries can’t be expressed in SQL
Find all the line managers for every employee

March - Managers: Gibson, Bird, Parker
Black - Managers: Pollard, Parker

Solution - Extensions to SQL

Problem: Clutters the language

Extensions to the language to allow this kind of loop
processing

Functions

Built into the SQL standard

Transform a value or set of values using some rule

String concatenation, length,
substring

Arithmetic max, min, power,
round, trunc

Date add, subtract dates

Aggregate or group average, sum, count

Functions Categories

Combines fields and /or additional text

SELECT concat("Employee: ", ename, " Sal: ", sal)
FROM emp

String Function - String Concatenation - concat

mid (string, starting point, no of chars) - returns
part of a string

select ename, mid (ename, 2, 4)
from emp

String Function - Substring

min () - returns smallest value in a
column

select min (sal)
from emp

Arithmetic Function - min

max () - returns largest value in a
column

select max (sal)
from emp

Arithmetic Function - max

avg () - returns mean value in a
column

select avg (sal)
from emp

Aggregate Function - avg

sum () - returns total of all values
in a column

select sum (sal)
from emp

Aggregate Function - sum

count () - returns total number of
values in a column

select count (sal)
from emp

Aggregate Function - count

Group by

Aggregate functions can be applied to subsets of the
table by using the group by syntax

select * or expression
from relations
[where expression]
[group by expression]

Group by

Aggregate functions can be applied to subsets of the
table by using the group by syntax

e.g.
Calculate avg()

Calculate avg()
Calculate avg()

Group by

Aggregate functions can be applied to subsets of the
table by using the group by syntax

select job, avg(sal)
from emp
group by job

Group by

Find the highest salary for each job category

select job, max(sal)
from emp
group by job

Nested sub-queries

When one of the conditions of a WHERE clause is a
query itself, this is called a nested sub-query, i.e.,

SELECT select-list
FROM table(s)
WHERE object operator (SELECT select-list
 FROM table(s)
 [WHERE condition]);

Nested sub-queries example

Find all the employees who earn more than the average
salary

Start by finding the average salary

select avg(sal)
from emp

Nested sub-queries example

Find all the employees who earn more than the average
salary

(select avg(sal)
from emp)

Now find all the employees that
earn more than this:

select ename, sal
from emp
where sal >=

Nested sub-queries example (2)

Typically, you need to use a nested sub-query where you
need to use an aggregate function and an attribute at
the same time

Find the employee who earns the least money

Attribute required Aggregate function
 required

Find the employee who earns the least money

Nested sub-queries example (2)

First attempt may try something like this:

select ename, min(sal)
from ...
where ...

This can’t work

many values
single value

Find the employee who earns the least money

Nested sub-queries example (2)

Better attempt:

select min(sal)
from emp

Find the minimum
salary

Find the employee who earns the least money

Nested sub-queries example (2)

Better attempt:

(select min(sal)
from emp)

Find the person who
has the minimum
salary

select ename, sal
from emp
where sal=

