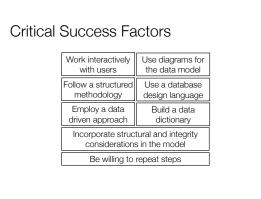
Database Design Methodology

Database Design Methodology

A structured approach that uses procedures, techniques, tools, and documentation aids to support and facilitate the process of design

Database Design Methodology

Three phases


Conceptual database design Constructing a model of the information used in an enterprise, independent of *all* physical considerations

Logical database design

Physical database design

Database Design Methodology			
Three phases			
Conceptual database design			
Logical database design	Constructing a model of the information used in an enterprise on a specific data model but independent of a particular DBMS and other physical considerations		
Physical database design			

Database Design Me	ethodology
Conceptual database design	
Logical database design	
Physical database design	Producing a description of the implementation of the database on secondary storage

Conceptual database design

Logical database design

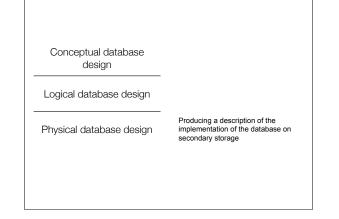
Physical database design

C	onceptual database design	Build local conceptual model for each user view
Log	gical database design	
Phy	vsical database design	

	Build local conceptual data mode for each user view	
	1.1	Identify entity types
Conceptual database	1.2	Identify relationships
design	1.3	Identify and associate attributes with entity and relationship types
Logical database design	1.4	Determine attribute domains
	1.5	Determine SK/CK/PK attributes
Physical database design	1.6	Specialise/generalise entity types (optional)
	1.7	Check model for redundancy
	1.8	Validate model against user transactions
	1.9	Review data model with user

Conceptual database design
Logical database design
Physical database design

Conceptual database design	
Logical database design	Build and validate local logical data model
Physical database design	


	Build and Validate Local Logical Data Model		
	2.1	Remove features not compatible with the relational data model	
Conceptual database design	2.2	Derive relations	
Logical database design Physical database design	2.3	Validate relations using normalisation	
	2.4	Validate relations against user transactions	
	2.5	Define integrity constraints	
	2.6	Review local logical data model with user	

	Build a Data N	and Validate Global Logical Model
Conceptual database design	3.1	Merge Local Logical Data Models into Global Model
Logical database design	3.2	Validate Global Logical Data Model
	3.3	Check for future growth
Physical database design	3.4	Review logical data Models with users

	Translate Global LDM for target DBMS			
	4.1	Design Base Relations for Target DBMS		
Conceptual database design	4.2	Derive representations of derived data		
	4.3	Design Integrity Rules for Target DBMS		
Logical database design	Desig	Design Physical Representation		
	5.1	Analyze Transcations		
	5.2	Choose File Organisations		
Dhysical database design	5.3	Choose Indexes		
Physical database design	5.4	Estimate Disk Space		
	6	Design User Views		
	7	Design security mechanisms		
	8	Consider redundancy		
	9	Monitor and fine tune		

Conceptual database design	
Logical database design	

Physical database design

Conceptual database design 1.1 Identify entity types Identify and document the main entity types in users view Look for objects, nouns or noun phrases Customer Invoice Address Salesperson Vehicle

Conceptual database design

1.1 Identify entity types

Do not confuse with relationship types

Manager

Do not confuse with attributes

Marriage

Watch out for synonyms (same meaning)

Office Branch

Conceptual database design

1.1 Identify entity types

Could use a data dictionary

Repository of defined common terms

Entity Name	Description	Aliases	Occurance
Employee	General term for all employees in the system	staff_member	Each employee works in one particular branch
Branch	Term for each physical site on a highstreet	shop	There are 12 branches

Conceptual	database

design

1.2	Identify relationships
-----	------------------------

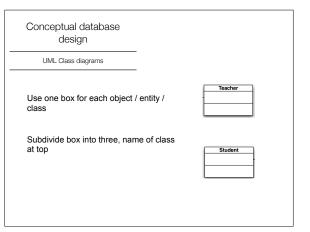
Identify and document the relationships that exist between the entity types previously identified

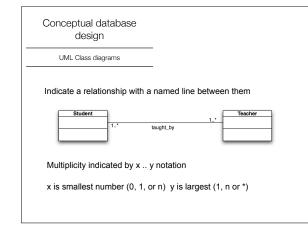
Employee	Works at
----------	----------

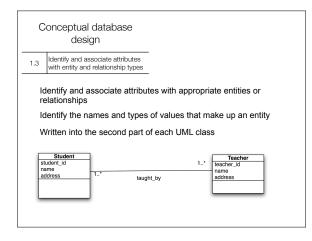
Branch

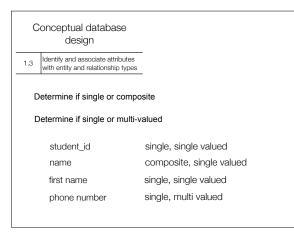
Conceptual database

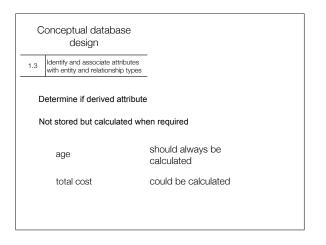
design

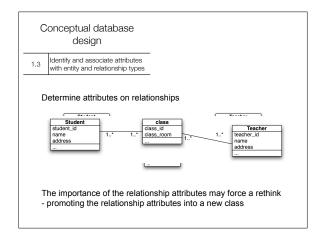

1.2 Identify relationships

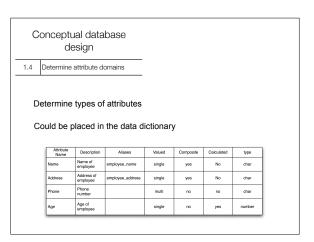

Could redraw the data dictionary at this point to include the relationships

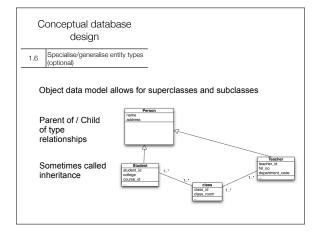


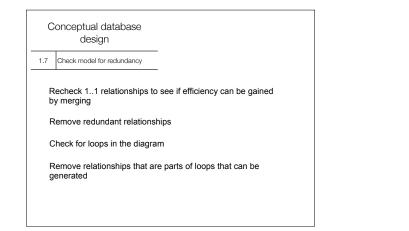

2	Identif	v relations	hins					
-	laontin	y relation	n npo					
D	eterm	ine the	multiplic	city of th	e relatio	onships		
-	0.0		manapin	sity of a		onompo		
_								
Er	ntity Name	Multiplicity	Description	Aliases	Occurance	Relationship	Entity Name	Multiplicit
F			General term		Each			
		11	for all	staff member	employee works in one	works at	Branch	18
II Em	plovee							
Em	ployee	11	employees in the system		particular			
Em	ployee	1.1	the system		branch			
⊢			the system Term for each physical site	shan	branch Each branch is in a	situated in	Benjan	1.
⊢	inch	11	the system Term for each	shop	branch Each branch	situated in	Region	1
ŀ			the system Term for each physical site on a	shop	Each branch is in a geographical	situated in	Region	1*
ŀ			the system Term for each physical site on a	shop	Each branch is in a geographical	situated in	Region	1*
ŀ			the system Term for each physical site on a	shop	Each branch is in a geographical	situated in	Region	1.*

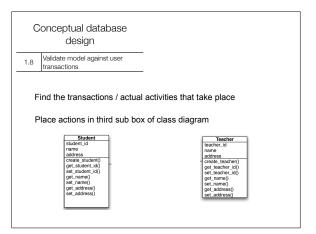

С	onceptual database design	
1.2	Identify relationships	
G	enerally use a modellin	g technique
С	urrent standard is UML	(Unified Modelling Language)
N	lany different model typ	es in UML
	Class diagrams	Close to old style entity- relationship diagrams

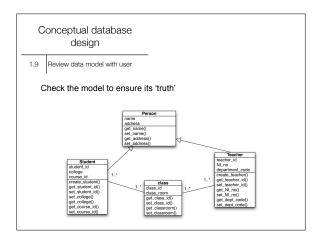


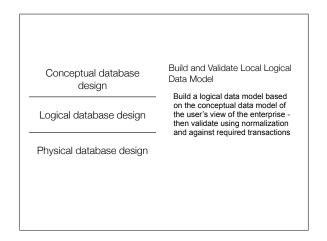





1.5 Determine SK/CK/PK attributes


Determine superkeys, candidate keys and primary keys


New attributes may have to be created if no appropriate key can be found


Remember that keys can be combinations of attributes

	Build and Validate Local Logical Data Model
	2.1 Remove features not compatible with the relational data model
Conceptual database design	2.2 Derive relations
Logical database design	2.3 Validate relations using normalisation
Physical database design	2.4 Validate relations against user transactions
	2.5 Define integrity constraints
	2.6 Review local logical data model with user

Logical database design 2.1 Remove features not compatible with the relational data model To refine the local conceptual data model to remove features not compatible with the relational data model Map this model to a local logical data model

2.1	Remove features not compatible with the relational data model	
	Remove M:N relationsh Remove complex relati Remove recursive relati Remove relationships v Re-examine 1:1 relatior Remove redundant rela	onships ionships vith attributes iships

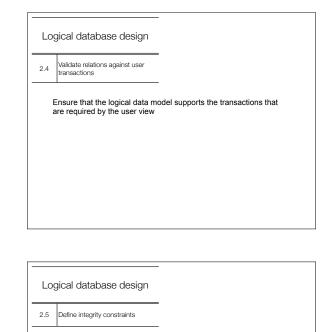
Lo	gical database design
2.2	Derive relations
	To derive relations from the local logical data model and to document the composition of each relation including identifying any foreign keys student (<u>SID</u> , firstname, lastname, address1, address2, address3, address4, postcode)

Logical database design

Validate relations using

2.3 Validate relations us normalisation

Apply standard normalisation tests


Most organisations aim for 3rd Normal Form or Boyce-Codd Normal Form

Logical database design

2.4 Validate relations against user

transactions

Ensure that the logical data model supports the transactions that are required by the user view

To identify and document the integrity constraints given in the user's view of the enterprise. This includes identifying:

Required data Referential integrity (foreign key validity) Attribute domain constraints (restricted values like Y/N) Enterprise constraints Entity integrity (PKs not null)

Logical database design

2.6 Review local logical data model with user

To ensure that the local logical data model is a true representation of the user's view

Conceptual database design	Build and Validate Global Logical Data Model
Logical database design	Objective: Combine the individual local logical data models into a single global logical data model
Physical database design	

	Build and Validate Global Logical Data Model		
Conceptual database design	3.1	Merge Local Logical Data Models into Global Model	
	3.2	Validate Global Logical Data Model	
Logical database design	3.3	Check for future growth	
Physical database design	3.4	Review logical data Models with users	

Logical database design

3.1 Merge Local Logical Data Models into Global Model

Review the names of entities and their primary keys Review the names of relationships Merge entities from the local views Include (without merging) entities unique to each local view Merge relationships from the local views Include (without merging) relationships unique to each local view Check for missing entities and relationships Check Integrity Constraints Draw the global logical data model Update the documentation

Lo	gical database design	
3.2	Validate Global Logical Data Model	-
	To validate the global logical c against the required transactio	lata model using normalization and ns, if necessary

	Transl DBMS	ate Global LDM for target
	4.1	Design Base Relations for Target DBMS
Conceptual database	4.2	Derive representations of derived data
design	4.3	Design Integrity Rules for Target DBMS
Legical database design	Desig	n Physical Representation
Logical database design	5.1	Analyze Transactions
	5.2	Choose File Organisations
Develoal database design	5.3	Choose Indexes
Physical database design	5.4	Estimate Disk Space
	6	Design User Views
	7	Design security mechanisms
	8	Consider redundancy
	9	Monitor and fine tune

Lo	gical database design	
3.3	Check for future growth	
1	To determine whether there are a the foreseeable future and to ass data model can accommodate th	ess whether the global logical
Logical database design		
3.4	Review logical data Models with users	
To ensure that the global logical data model is a true representation of the enterprise		