
Aim of session: To discuss strategies and techniques 
that can be used when developing some form of IT 

project

Engineering software

A number of questions

First: Why? What’s wrong with software 
at the moment?

• Who has ever lost data or work?

• Who has suffered a ‘crash’?

• Who has installed an update 
patch? Why?

Original problems solved using small 
programming teams

Historical perspective (early 1960s)



• Small numbers of programmers
• Small numbers of communication lines
• Smaller problems specification
• Little management required
• Ad-hoc software development

..small programming teams so..

Larger problems (enterprise size systems) tried 
to scale this approach

Later:

• 100’s or 1000’s of programmers
• No clear management approach

Outcome:
• Projects delayed / overbudget
• Full of bugs

One IBM operating system (TSS/360) cost 
$millions to construct

Example

• Every patch released contained more 
errors

• The OS was never fixed properly and 
was abandoned after 2 years

Which field of knowledge has had a great deal 
of success building things?

• Engineering

So think of a solution:

• 200 years of analysed management 
approaches 

• Bridges typically stay up and tunnels 
generally don’t collapse



• Bridges typically stay up and tunnels 
generally don’t collapse

Tacoma Narrows Bridge (1940)

• Note the emphasis on system 
construction

So apply engineering techniques to the 
construction of systems involving 

software

This works really well:

• By January 5 critical update patches 
had been released

• 2 of these were to fix problems 
introduced by the earlier critical update 
patches

Windows XP was released Nov/Dec 2001

• Reliable

What is well engineered software?

Many different suggested mechanisms for 
the development process

• Efficient • Maintainable

• Appropriate



Analysis

At an abstract level they all follow (at 
least)

Design

Testing

Implementation

Strict
Formal

Rigourous

They fall somewhere on this scale

 Hard

Less strict
Informal
Abstract

 Soft

E.g.SSADM E.g. Soft Systems

• Strict methodology

Example: SSADM

• Large amount of paperwork 

• Each stage precisely defined in various 
rulebooks

• A waterfall approach

Structured Systems Analysis / Design 
methodology

Requirement Analysis & definition

SSADM stages

Systems and software design

Implementation & Unit testing

Integration & systems testing 

Clarifying the area of study
Identifying the need for a new system
Feasibility study
Project Planning

Logical systems design
Physical systems design

Systems construction

Systems testing
Systems maintenance



• Large amount of documentation 
generated

• Slow, expensive

Disadvantages of SSADM

• Very hard long drawn out process

• London Ambulance Computer Aided 
despatch service

• London stock market system - Taurus

No one methodology is guaranteed to 
work

• SSADM has had some prominent 
failures 

• System requirements should be testable

• Yes/No or True/False responses

Looking at some of these phases in 
more detail

• The Analysis phase typically requires a 
requirements specification

The system must process 5000 records per second

• The system will have a user friendly 
interface

Examples

The system should follow Apples GUI guidelines as 
sepcified in document … etc

• The system will be fast



The analysis phase can involve some 
form of diagramming notation

• UML (Unified modeling language) 

• Diagrams of entities (objects) and the 
links (relationships between them)

This process can also take place in the 
design phase

Design can be done in a variety of ways

• Prototyping - Build a one off prototype, 
analyse it and then restart the process

• Formal transformation - construct a strict 
formal definition and then transform it 
into a working system (VDM)

• Exploratory - quickly build a system, try 
it, refine it, try it, refine it etc.

Implementation

Terse, harder to 
program

Very fast, small 
footprint (size)

• Could be done in low level language 
(assembly or machine code)



Implementation

More abstract, higher 
conceptual level

May use some form of 
object hierarchy 
(assembly from 
reused components)

• Could be done in 3rd generation language 
such as Java, C++, C#, Fortran, Basic, 
Javascript, Java

Implementation

More abstract again

Specify the problem 
without having to specify 
‘how’ the problem should 
be solved

• Could be done in 4th generation language 
such as SQL (Structured Query Language)

SELECT LastName 
FROM Persons

• Classic problems
• Out of date

Case study: The web page as a system

• Badly indexed
• Not fit for purpose - marketing?
• Badly designed
• No regard for consequences - security?

Important:Reliability and maintainability 

• Often thrown together in adhoc style


